A cohesive finite element for quasi-continua

نویسندگان

  • Xiaohu Liu
  • Shaofan Li
  • Ni Sheng
چکیده

In this paper, a cohesive finite element method (FEM) is proposed for a quasi-continuum (QC), i.e. a continuum model that utilizes the information of underlying atomistic microstructures. Most cohesive laws used in conventional cohesive FEMs are based on either empirical or idealized constitutive models that do not accurately reflect the actual lattice structures. The cohesive quasi-continuum finite element method, or cohesive QC-FEM in short, is a step forward in the sense that: (1) the cohesive relation between interface traction and displacement opening is now obtained based on atomistic potentials along the interface, rather than empirical assumptions; (2) it allows the local QC method to simulate certain inhomogeneous deformation patterns. To this end, we introduce an interface or discontinuous Cauchy– Born rule so the interfacial cohesive laws are consistent with the surface separation kinematics as well as the atomistically enriched hyperelasticity of the solid. Therefore, one can simulate inhomogeneous or discontinuous displacement fields by using a simple local QC model. A numerical example of a screw dislocation propagation has been carried out to demonstrate the validity, efficiency, and versatility of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Variational Formulations for Micro-cracked Continua in the Multifield Framework

Within the framework of multifield continua, we move from the model of elastic microcracked body introduced in (Mariano, P.M. and Stazi, F.L., Strain localization in elastic microcracked bodies, Comp. Methods Appl. Mech. Engrg. 2001, 190, 5657–5677) and propose a few novel variational formulations of mixed type along with relevant mixed FEM discretizations. To this goal, suitably extended Helli...

متن کامل

A Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel

Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally and numerically. Multi-linear Isotropic Hardening method coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic behavior of the material. Mode-I CT fracture specimens have been tested to generate experimental load-displacement-crack growth data during sta...

متن کامل

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

متن کامل

Micromechanical-based criteria for the calibration of cohesive zone parameters

This paper presents a new micromechanical model for a collection of cohesive zone models embedded between each mesh of a finite element-type discretization. It aims to forth fully extend the previous linear results of [1] to the calibration of damageable cohesive parameters (cohesive peak stress, critical opening displacement, cohesive energy, etc). The main idea of the approach consists in rep...

متن کامل

TOPOLOGY OPTIMIZATION OF 2D BUILDING FRAMES UNDER ARTIFICIAL EARTHQUAKE GROUND MOTIONS USING POLYGONAL FINITE ELEMENT METHOD

In this article, topology optimization of two-dimensional (2D) building frames subjected to seismic loading is performed using the polygonal finite element method. Artificial ground motion accelerograms compatible with the design response spectrum of ASCE 7-16 are generated for the response history dynamic analysis needed in the optimization. The mean compliance of structure is minimized as a t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007